Kernel-Based Feature Extraction and Speech Technology Applications
نویسندگان
چکیده
منابع مشابه
Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملA Noise Robust Speech Recognition System Using Wavelet Front End and Support Vector Machines
Recent works in speech recognition technology, classification techniques is focused on models, such as support vector machines (SVMs), in order to improve the generalization ability of the machine learning for noisy environments. However kernel function plays a vital role in the generalization ability of the SVMs. This paper address, the issue of noise robustness for an Automatic Speech Recogni...
متن کاملFeature extraction in opinion mining through Persian reviews
Opinion mining deals with an analysis of user reviews for extracting their opinions, sentiments and demands in a specific area, which can play an important role in making major decisions in such area. In general, opinion mining extracts user reviews at three levels of document, sentence and feature. Opinion mining at the feature level is taken into consideration more than the other two levels d...
متن کاملSPEECH RECOGNITION for VOICE BASED CONTROL
In this paper, we describe a typical approach for implementing a voice based control solution. Isolated word speech recognition is performed using cepstral feature extraction and hidden Markov modeling of speech. The merit of this document lies in the amalgamation of the simplest yet most successful relevant methods into a coherent design guideline, aiming to trivialize the integration of speec...
متن کاملPCA-Based Speech Enhancement for Distorted Speech Recognition
We investigated a robust speech feature extraction method using kernel PCA (Principal Component Analysis) for distorted speech recognition. Kernel PCA has been suggested for various image processing tasks requiring an image model, such as denoising, where a noise-free image is constructed from a noisy input image [1]. Much research for robust speech feature extraction has been done, but it rema...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007